[8] Nucleation and growth mechanism of ferroelectric domain-wall motion

Nature 449 (18), 881-884 (2007)

Back To Listings
  • First authors: Young-Han Shin
  • Corresponding authors: Andrew M. Rappe
  • Whole authors: Young-Han Shin, Ilya Grinberg, I-Wei Chen, Andrew M. Rappe
  • Authors from M3L: Young-Han Shin
The motion of domain walls is critical to many applications involving ferroelectric materials, such as fast high-density non-volatile random access memory1. In memories of this sort, storing a data bit means increasing the size of one polar region at the expense of another, and hence the movement of a domain wall separating these regions. Experimental measurements of domain growth rates in the well-established ferroelectrics PbTiO3 and BaTiO3 have been performed, but the development of new materials has been hampered by a lack of microscopic understanding of how domain walls move. Despite some success in interpreting domain-wall motion in terms of classical nucleation and growth models, these models were formulated without insight from first-principles-based calculations, and they portray a picture of a large, triangular nucleus that leads to unrealistically large depolarization and nucleation energies. Here we use atomistic molecular dynamics and coarse-grained Monte Carlo simulations to analyse these processes, and demonstrate that the prevailing models are incorrect. Our multi-scale simulations reproduce experimental domain growth rates in PbTiO3 and reveal small, square critical nuclei with a diffuse interface. A simple analytic model is also proposed, relating bulk polarization and gradient energies to wall nucleation and growth, and thus rationalizing all experimental rate measurements in PbTiO3 and BaTiO3.

Authors from M3L

Author from M3L
Young-Han Shin
hoponpop@ulsan.ac.kr